

Academy of Sciences of the Czech Republic

The Temperature Dependent Studies of Rare-Earth (Dy³⁺, Sm³⁺ and Tb³⁺) Activated Gd₃Ga₃Al₂O₁₂ Garnet Single Crystal

> K. Bartosiewicz^{1,2}, V. Babin¹, A. Beitlerova¹, M. Nikl¹, P. Bohacek³ ¹Institute of Physics AS CR, Cukrovarnicka 10, Prague, 16253, Czech Republic ²Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Praha 1, 11519, Czech Republic ³Institute of Physics AS CR, Na Slovance 1999/2, Prague 8, 18221, Czech Republic

Outline

3 Results and Discussion

4 Conclusions

Outline

3 Results and Discussion

- ✓ $Y_3AI_5O_{12}$:Nd³⁺ solid laser material since 1960s
- ✓ YAG:Ho³⁺ and YAG:Er³⁺ IR laser materials for medical surgery
- ✓ Nowadays RE activated YAG is intensively studied for application as LED phosphors
- ✓ In recent years Pr³⁺ and Ce³⁺ activated (Y,Gd)₃(Ga,Al)₅O₁₂ crystals have been intensively studied for application as a scintillating materials
- GGAG host lattice doped with other RE ions has been much less explored. However, GGAG may hold a number of merits for optical applications:
 - the intrinsic ${}^8S_{7/2} \rightarrow {}^6I_J$ transition of Gd³⁺ can be utilized as a new excitation source for some types of RE activators, and enhanced luminescence via Gd³⁺ \rightarrow RE³⁺ energy transfer
 - GGAG lattice is more covalent than YAG which may produce a new emission features and result in improved emission intensity

The aim of this work is to study the effect of temperature on the luminescence properties of the Dy^{3+} , Sm^{3+} and Tb^{3+} in $Gd_3Ga_3Al_2O_{12}$ single crystal as well as to reveal the mechanism responsible for thermal quenching.

Outline

3 Results and Discussion

Gd₃Ga₃Al₂O₁₂:Dy³⁺ 0.5%

Absorption spectrum of the Dy³⁺ activated $Gd_3Ga_3Al_2O_{12}$ single crystal. Dy³⁺ concentration in the sample is 0.5 mol %.

RT excitation (λ_{em} =580 nm) and emission (λ_{ex} =270 nm) spectra of GGAG:Dy³⁺

Gd₃Ga₃Al₂O₁₂:Dy³⁺ 0.5%

Emission spectra for $Gd_3Ga_3Al_2O_{12}$:Dy³⁺ under exciation into Gd^{3+} ions at 270 nm recorded in the range between 77 and 700 K.

Gd₃Ga₃Al₂O₁₂:Dy³⁺ 0.5%

10

temperature dependence of the photoluminescence decay times of $Dy^{3+} {}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ and ${}^{4}I_{15/2} \rightarrow {}^{6}H_{15/2}$ emission transitions at 582 and 456 nm, respectively, under excitation into Dy^{3+} ion at 347 nm.

Gd₃Ga₃Al₂O₁₂:Dy³⁺ 0.5%

Gd₃Ga₃Al₂O₁₂:Sm³⁺ 0.5%

Absorption spectrum of the Sm³⁺ activated $Gd_3Ga_3Al_2O_{12}$ single crystal. Sm³⁺ concentration in the sample is 0.5 mol %.

RT excitation (λ_{em} =614 nm) and emission (λ_{ex} =270 nm) spectra of GGAG:Sm³⁺

Gd₃Ga₃Al₂O₁₂:Sm³⁺ 0.5%

Gd₃Ga₃Al₂O₁₂:Sm³⁺ 0.5%

the decay times of Sm³⁺ emission at 614 nm and the integrals of Sm³⁺ luminescence between 530 and 680 nm as a function of temperature. In both cases the Sm³⁺ luminescence was excited directly into Sm³⁺ ions at 372 nm

Gd₃Ga₃Al₂O₁₂:Tb³⁺ 1%

absorption spectrum of the Tb³⁺ activated $Gd_3Ga_3Al_2O_{12}$ single crystal. Tb³⁺ concentration in the sample is 1 mol %.

RT excitation (λ_{em} =545 nm) and emission (λ_{ex} =306 nm) spectra of GGAG:Tb³⁺

Gd₃Ga₃Al₂O₁₂:Tb³⁺ 1%

Gd₃Ga₃Al₂O₁₂:Tb³⁺ 1%

temperature dependence of the photoluminescence decay times of Tb³⁺ ${}^{5}D_{3} \rightarrow {}^{7}F_{6}$ (blue curve) and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (red curve) emission at 382 and 547 nm, respectively, under excitation into $4f \rightarrow 5_{1}$ absorption transition at 266 nm

temperature dependence of the PL intensity integrals of Tb³⁺ emission related to ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$ (red curve) and ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (blue curve) transitions under excitation into $4f \rightarrow 5d_{1}$ band at 266 nm.

✓ Non-radiative energy transfer from Gd^{3+} towards Dy^{3+} , Sm^{3+} and Tb^{3+} was observed

✓ Gd³⁺ ions very effectively sensitize the Dy³⁺, Sm³⁺ and Tb³⁺ luminescence

✓ Photoluminescence features of Dy^{3+} , Sm^{3+} and Tb^{3+} in GGAG single crystal confirmed a high homogeneity of the host lattice

✓ GGAG:Dy³⁺ shown the stable luminescence up to 800 K

✓Thermal quenching of the Sm³⁺ luminescence sets in at 600 K (most probably due to multiphonon relaxation)

 Thermal quenching of the Tb³⁺ luminescence sets in at 500 K (most probably due to induced photoionization process)

For financial support from

Marie Curie Initial Training Network LUMINET, grant agreement no. 316906

and to you for your attention!